The obstructions for toroidal graphs with no K3, 3's
نویسندگان
چکیده
We prove a precise characterization of toroidal graphs with no K3,3-subdivisions in terms of forbidden minors and subdivisions. The corresponding lists of four forbidden minors and eleven forbidden subdivisions are shown.
منابع مشابه
Forbidden minors and subdivisions for toroidal graphs with no K3, 3's
Forbidden minors and subdivisions for toroidal graphs are numerous. In contrast, the toroidal graphs with no K3,3’s have a nice explicit structure and short lists of obstructions. For these graphs, we provide the complete lists of four forbidden minors and eleven forbidden subdivisions.
متن کاملMinimum Tenacity of Toroidal graphs
The tenacity of a graph G, T(G), is dened by T(G) = min{[|S|+τ(G-S)]/[ω(G-S)]}, where the minimum is taken over all vertex cutsets S of G. We dene τ(G - S) to be the number of the vertices in the largest component of the graph G - S, and ω(G - S) be the number of components of G - S.In this paper a lower bound for the tenacity T(G) of a graph with genus γ(G) is obtained using the graph's connec...
متن کاملThe structure of K3, 3-subdivision-free toroidal graphs
We describe the structure of 2-connected non-planar toroidal graphs with no K3,3-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K5-subdivision in [A. Gagarin and W. Kocay, “Embedding graphs containing K5-subdivisions”...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملFinite dualities and map-critical graphs on a fixed surface
Let K be a class of graphs. Then, K is said to have a finite duality if there exists a pair (F , U), where U ∈ K and F is a finite set of graphs, such that for any graph G in K we have G ≤ U if and only if F 6≤ G for all F ∈ F (“ ≤ ” is the homomorphism order). We prove that the class of planar graphs has no finite duality except for two trivial cases. We also prove that a 5-colorable toroidal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009